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Shock-wave reflexion in a relaxing gas 
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Department of Aeronautics and Astronautics, Stanford University, 

Stanford, California 

(Received 16 March 1970) 

The transient situation which follows when a plane normal shock wave is re- 
flected (from a coplanar wall) into its own relaxation zone is examined theo- 
retically. Approximate inner and outer solutions for the wall-pressure history 
are employed to establish the timewise variations in the thermodynamic state of 
the gas adjacent to the wall. Results for chemically relaxing 0, and vibrationally 
relaxing CO, are compared with previous numerical solutions based on the 
method of characteristics, and the agreement is found to be excellent. The 
approximate technique is simple and requires only a minimum of computing 
time. 

1. Introduction 
This paper is concerned with the effects of relaxation on the state of the gas 

behind a reflected shock wave in a shock tube. In  particular, a simple model is 
described for calculating the transient behaviour of the gas adjacent to a shock- 
tube end-wall for situations in which relaxation is present both upstream and 
downstream of the reflected shock wave, i.e. when the primary shock wave 
reflects into its own relaxation zone. Effects such as shock-wave curvature, side- 
wall boundary layers, transport processes and heat transfer to the end-wall are 
neglected throughout. 

The theory given here has application to relaxation phenomena in a number 
of gases, but results are presented only for the cases of chemical relaxation 
(dissociation and recombination) in oxygen and vibrational relaxation in carbon 
dioxide. The results of the approximate model can thus be compared with the 
numerical calculations of Presley & Hanson (1969) for oxygen and of Johannesen, 
Bird & Zienkiewicz (1967) for carbon dioxide. Both of these earlier studies 
employed the method of characteristics to obtain rather lengthy numerical 
solutions for the entire reflected-shock flow field. The intent of the present paper 
is to provide an approximate solution, valid only in the vicinity of the end-wall, 
which requires a minimum of computer time. 

A primary difficulty of the shock-reflexion process is its unsteady nature. 
When relaxation phenomena are present the reflected shock wave changes speed 
during the time required for the upstream and downstream flows to reach 
equilibrium conditions, and t h e  gas particles which pass through the reflected 
shock wave during this period experience different thermodynamic histories than 
those which pass through the later, constant-speed shock wave. Hence these 
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‘early ’ gas particles ultimately reach different equilibrium states from the state 
predicted by the usual constant-speed-shock calculations. The spatial region, 
adjacent to the end-wall, which contains this non-uniform gas can be called 
an entropy layer; this terminology is consistent with that used to describe the 
region adjacent to the surface of a wedge in steady supersonic flow of a relaxing 
gas. Neither the transient nor the steady thermodynamic state of the gas within 
this entropy layer is known from elementary calculations, with the exception of 
the pressure, which must eventually take on thevalue corresponding to a constant- 
speed reflected shock wave with a uniform equilibrium flow upstream and a 
stagnated equilibrium flow downstream. Only after the reflected shock attains 
its final equilibrium speed, and the flow pattern with respect to the reflected 
shock wave becomes truly steady, does a region of uniform equilibrium gas begin 
to appear (external to the entropy layer) for which properties can be calculated 
by usual techniques. Thereafter the reflected-shock region consists of a steadily 
growing volume of uniform equilibrium gas bounded at one end by the relaxa- 
tion zone behind the reflected shock wave and a t  the other by a finite, unchanging 
entropy layer. The values of the thermodynamic variables within the uniform 
region are the ones which appear in tables of ‘equilibrium reflected-shock 
properties’, and this thermodynamic state will be referred to hereafter as the 
reference equilibrium state. 

In  the present work we propose to establish the transient behaviour of the 
gas immediately adjacent to the end-wall by employing an approximate solution 
for the wall pressure. It will be shown that a knowledge of the pressure solution, 
and the appropriate rate law, is suEcient to completely specify the timewise 
variations in the remaining thermodynamic variables. The key step is the pressure 
solution, and this is accomplished by taking advantage of the fact that the 
characteristic relaxation times for the flow behind the incident and reflected 
shock waves are frequently quite different. Accordingly, separate inner and 
outer solutions, valid for short and long times respectively, are employed for the 
wall pressure. A composite solution, obtained by simply combining the two 
separate solutions, is shown to provide quite accurate results for cases in which 
the relaxation times are reasonably different. 

The overall end-wall pressure history is dominated by the outer solution, and 
accordingly more attention is given to its development. The inner solution plays 
only a minor role, but it does provide an important link between the correct 
initial and final pressure behaviour. This link is necessary for calculating the 
thermodynamic history of the gas since all the thermodynamic variables must 
begin with the correct initial values in order to properly satisfy the thermal equa- 
tion of state. 

2. Outer solution for the wall pressure 
The behaviour of the wall pressure in the case of a relaxing gas was first dis- 

cussed by Baganoff (1965). He argued that the effect of relaxation behind the 
reflected shock wave is to cause a decrease in pressure, while relaxation behind 
the incident shock wave, on the contrary, causes an increase in wall pressure. 
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These arguments were subsequently confirmed by the numerical calculations of 
Johannesen et al. (1967) and Presley & Hanson (1969). 

Fortunately the time scales of the relaxation processes behind the incident 
and reflected shock waves are frequently quite different, and in such cases the 
relaxation effects can, to a remarkable degree of accuracy, be considered separate 
(Hanson 1968). A simple model for the outer solution, based on this concept of 
separate relaxation times, can be constructed by supposing that the relaxation 
zone behind the reflected shock wave is negligibly thick and is absorbed into the 

FIGURE 1 . 2 ,  t diagram of shock-wave reflexion. 

viscous structure of the shock front. In  fact we assume that the duration of all 
events associated with the relaxation in the reflected-shock region can be set 
equal to zero. Such a model is capable of yielding extremely accurate results 
for long times after reflexion (i.e. times much greater than that corresponding to 
the passage of a gas particle through the neglected relaxation zone), and this is 
the technique we propose to pursue here. The results will of course be most valid 
for situations in which the ratio of the relaxation times is rather large (a precise 
definition of the relaxation time is not necessary at  this stage). 

The first step of the proposed outer solution consists of calculating the properties 
throughout the relaxation zone following the incident shock wave. These com- 
putations are usually performed using a computer code based on the conservation 
relations for one-dimensional flow, the thermal and caloric state relations for the 
gas in question and the applicable reaction-rate equation. The techniques for 
solving the incident-shock equations are well documented and need not be dis- 
cussed here. The important point is that, once the reaction mechanism and the 
associated rate equation have been specified, the distribution of all properties 
throughout the relaxation zone can be easily calculated for given values of the 
shock speed and the initial shock-tube conditions. 

Details of the model for the reflexion process are conveniently discussed using 
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the x, t diagram of figure 1, where x is the distance from the shock-tube end-wall 
and t is the time after initial reflexion; s is the distance behind the incident shock 
wave. The incident shock wave travels toward the end-wall at a constant speed 
V ,  and the reflected shock wave is assumed (consistently with the assumptions of 
an outer solution) to reflect with a constant speed V,, taken here to be the final, 
equilibrium value of shock speed corresponding to equilibrium (chemical or vibra- 
tional) upstream and downstream of the reflected shock wave, i.e. (V,)E2-E5. A 
qualitative profile of the density ( p )  distribution throughout the incident-shock 
relaxation zone is also shown. This profile would appear as if it were travelling 
across the x ,  t plane attached to the incident shock wave. 

The wall pressure at time zero is given by a calculation assuming frozen con- 
ditions in region 2 and local equilibrium in region 5, i.e. PF2--E5. Thereafter the 
pressure rises asymptotically to the final, equilibrium value, PE2--E5, based on 
equilibrium conditions in region 2 and region 5. Values for the pressure at inter- 
mediate times are computed by a simple mapping technique which transforms 
the spatial variations in density throughout region 2 into temporal variations 
in pressure on the end wall. Details of this mapping technique, together with 
justifications for its use, form the subject of the following paragraphs. 

The first step in the mapping process consists of projecting (unchanged) the 
known properties at point A across the 5, t plane to form the upstream boundary 
conditions for the reflected shock wave at  point B. The state of the gas at point 
C immediately behind the shock front is then known from standard shock-jump 
relations since the gas is assumed to be in local equilibrium. The pressure at  
point C can be transferred across region 5 along a characteristic terminating at 
point D.  Since the gas is assumed to be in local equilibrium, the pressure is 
unchanged along this characteristic save for small variations accounting for any 
change in particle velocity. The characteristics may be considered straight for 
all practical purposes as only small variations in temperature and particle 
velocity occur in region 5 for this problem. For convenience all of the right- 
running characteristics are taken to have a slope given by the equilibrium speed 
of sound evaluated at  the reference equilibrium state, i.e. dxldt = - ( u ~ ) ~ ~ - ~ ~ .  

The complete wall-pressure history can be constructed from a number of these 
transformations, each originating at a different position behind the incident 
shock wave. Since the relaxation profiles in region 2 are uniquely determined by 
the rate law specified, a unique relation also exists between the rate law chosen 
and the computed wall-pressure history. 

In the real case the reflected shock wave moves away from the end-wall with 
a speed which changes with time. As the gas begins to relax in region 5 the shock 
speed rapidly decays from its initial, frozen value, (v)F2--ff5, to a value approach- 
ing (V,)F2-E5. Since the time required for this change to take place is comparable 
to the relaxation time in region 5, we may assume, for the purpose of constructing 
an outer solution, that the change occurs in zero time. Then, in a time of the 
order of the laboratory relaxation time in region 2, i.e. r2L, the shock speed 
increases to a final value ( v ) E 2 - E 5 .  Fortunately there is little differenoe between 
the values of (v)F2-E5 and (J$E2-E5, and considerable simplification can be 
realized by choosing a constant-speed shock trajectory with a slope of (T&2-E5. 
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In  fact, with this approximation, and one other regarding the gas-state calcula- 
tions at point C, the pressure at  point D can be written explicitly in terms of the 
density at  point A ,  as shown below. 

The pressure at point C is given by standard shock-jump relations as 

where, from the conservation of mass, 

PBIPC = (V + Uc)/(v, + UB). ( 2 )  

77, = K ( 1  -P1/Pe), (3) 

In these relations 77, is the speed of the gas toward the end-wall at point B, 

and 77, is the speed of the gas toward the wall at  point C. Numerous calculations 
have shown that U, < K, so the ratio p B / P c  is well approximated by 

This last result is physically plausible since one would expect the flow to  be 
nearly stagnant everywhere in region 5 except within the relaxation zone. 

From incident-shock relations, one can write 

where the symbol T~ is used to denote the local value for the density ratio across 
the incident shock wave, p B / p l .  Upon substitution of (3), (4) and ( 5 ) ,  ( 1 )  becomes 

(6) 
simply 

where ( 1  + V,/V,) is a constant because of the assumption imposed on the reflected 
shock speed. Furthermore, Pc/Pl >> 1 for shock waves strong enough to produce 
relaxation, so that one has the simple result 

pc = PI+Pl m r B -  1 )  (l+V/E),  

An asterisk will be used hereafter to denote the reference equilibrium conditions 
in region 5 (the state previously denoted by E2-E5). 

Since the velocity 77, was taken as zero, Po can be set equal to P,, and the 
pressure on the end-wall a t  point D can be written explicitly in terms of the 
density at  point A ,  i.e. 

This particularly simple result is quite reasonable if one remembers that the 
static pressure in region 5 is essentially proportional to the upstream dynamic 
pressure, and the dynamic pressure involved varies almost linearly with the 
density alone (since the relative velocity of the gas and the reflected shock wave 
is nearly constant). The correct asymptotic behaviour of this last expression 
is obvious. 

Since the time at  point D can be written directly in terms of the distance s a t  
point A ,  

PD/PS* = ( T A - l ) / ( V m -  1 ) -  (8) 

to = (s,/E) ( 1  + K/at)/(1 + V / U  (9) 
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where a: is the equilibrium speed of sound evaluated a t  the reference equilibrium 
state, the outer solution for the wall pressure is now completely specified once 
the density distribution in region 2 is known. 

It is worth noting that the equilibrium speed of sound, rather then the frozen 
speed of sound, has been used for the slope of the characteristics in order to be 
consistent with the assumption of local equilibrium throughout region 5. For 
a discussion of the equilibrium speed of sound in a relaxing gas see, for example, 
Vincenti & Kruger (1965). 

We are now in a position to demonstrate the accuracy of the outer solution 
technique by comparing results with numerical calculations based on the method 
of characteristics. Figures 2 and 3 present such comparisons for two different 
shock waves in chemically relaxing oxygen. The characteristics calculations were 
performed at NASA Ames Research Center (Presley & Hanson) and have been 
labelled ' Ames solution'. The chemical reaction considered was 

(10) 0 2 + M  e 2O-t-M 

where k, and k, are the dissociation and recombination rates respectively, and 
M represents a general collision partner, in this case either an atom or molecule 
of oxygen. The rate law was specified by 

kd 

x-, 

where W is the molecular weight of 0,, a i s  the mass fraction of the 0-atom species, 
K is the usual equilibrium constant and the square brackets are used to denote 
species concentrations (in moles/cm3). This form of the rate equation includes 
the common assumption that the ratio of the dissociation and recombination 
rates is equal to the equilibrium constant evaluated at the local translational 
temperature. Numerical values for the recombination rate were calculated froin 

k, = 7.3 x 1021 T-2 [cms/(mole2 sec)], (12) 

while values for the equilibrium constant were computed from statistical 
mechanics on the assumption that the gas remains electronically unexcited 
(see Presley & Hanson). 

The agreement between the outer solution and the Ames solution is remarkably 
good in figure 2 and figure 3. I n  fact, the outer solutions deviate less than 2 yo from 
the characteristics solutions except during the brief initial period of time wherein 
the relaxation in region 5 is important. For such short times an inner solution 
becomes useful. The agreement shown in figure 2 ,  the case of a moderately 
strong shock wave (aaE N 0*1), begins to deteriorate slightly for large time, but 
the disagreement is a result of difficulty with the Ames solution rather than error 
in the outer solution. This difficulty, involving small omillations in the values of 
pressure and particle velocity throughout the characteristics network, was the 
primary motive for ending the calculations a t  a time of 35psec. These oscillations 
were a function of the network mesh size and hence could only be reduced at the 
expense of increasing the computing time (which already amounted to more than 
4 h). The characteristics solution in figure 3, the case of a stronger shock wave 
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(aZE N 0.25), was terminated for the same reason although the disagreement with 
the outer solution at large time is less pronounced. 

We can demonstrate the accuracy of the outer solution for a vibrationally 
relaxing gas by utilizing the results presented by Johannesen et al. (1967) for 
CO,. Johannesen's group treated the shock-reflexion problem numerically by 
making use of the characteristic equations for one-dimensional unsteady flow with 
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FIGURE 2. Comparison of long-time wall-pressure histories in chemically relaxing 0,; 
V,  = 3.05 km/sec, TI = 294 OK, PI = 2 torr and k, = 7.3 x 1021 !P2 [cma/(mole2 see)]. 
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FIGURE 3. Comparison of long-time wall-pressure histories in chemically relaxing 0,: 
V,  = 3-96 km/sec, TI = 294 O K ,  = 2 torr and k, = 7.3 x 1021 T-a [cm6/(molo2 sec)]. 
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heat transfer. The heat-transfer term was set equal to the rate of vibrational 
excitation according to the Bethe-Teller rate law, 

DB/Dt = (5 - B ) / T ,  (13) 

where cr is the vibrational energy and3  its local equilibrium value. The parameter 
r ,  the relaxation time, was specified by Johannesen on the basis of a curve fit 
to previous experimental data (Johannesen, Zienkiewicz, Blythe & Gerrard 
1962), i.e. in their notation, 

PT (atm sec) = (T/273)/CDO&(T), (14) 

where T is the absolute temperature, @@ = 2.5 x 106 (sec Amagat)-l, and 

6(T) = (T/959) exp [2.02 - 248(T/959)3]  [l - exp ( - 959/T)]-'. (15) 

Johannesen et al. - 

- 
Outer solution 

- 

- 

0.5 I I I I I I I I 1 
0 1 2 3 4 

End-wall time (psec) 

FIGURE 4. Comparison of long-time wall-pressure histories for vibrationally relaxing CO,: 
= 1.62 km/sec, T, = 300 OK and PI = 1 torr. - -, small steps; 0, lnrgc stops. 

It was necessary to read the above value for CD, (the relaxation frequency at  
959 OK) from figure 5 of Johannesen's (1962) earlier paper since he did not specify 
the particular value used in his reflected-shock calculations. There is, therefore, 
a chance that the value of Q0 used in the outer-solution calculations differs 
slightly from the value employed by Johannesen. 

Figure 4 provides a comparison between the wall-pressure history computed 
with the outer solution and the characteristics results presented by Johannesen 
et al. (1967). Note that the characteristics computations were carried out for 
two different step sizes (the small steps, one-fifth the size of the large steps, yield 
a solution about 1 yo lower than the large-step solution). The agreement between 
the outer solution and the small-step computation is quite good, except for 
very small values of time, and it is tempting to suggest that calculations based 
on a still smaller step size would provide even better agreement. 
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The deviation between the small- and large-step results for short times during 
which both computations are available (the small-step solution was apparently 
terminated at  about 0.8psec) implies that an accumulative error is present in the 
large-step solution. Hence the large-step characteristics solution cannot be 
applied as a rigorous standard of comparison for the outer solution even for 
large values of time. However, the guaranteed asymptotic behaviour of the 
outer solution, and the excellent agreement found with the small-step solution 
at  short times, provide strong support for applying the outer solution with con- 
fidence for all but very short times. In  fact, apart from the initial period im- 
mediately following reflexion, the outer solution is almost certainly more 
accurate than the present characteristics results. 

With the accuracy of the outer solution established for the circumstances 
described above, it is appropriate to comment on the applicability of the outer 
solution to other gases and test conditions. We recall that the basic hypothesis 
upon which the technique rests is that the relaxation time in region 2 should be 
much greater than the corresponding relaxation time in region 5.  A simple com- 
parison of these relaxation times should therefore enable one to distinguish 
situations which can be successfully treated with this approach. 

We examine fist the somewhat simpler case of vibrational relaxation. The 
presence of simultaneous chemical reactions is not considered. The characteristic 
relaxation time for vibrational relaxation can generally be expressed in the 

(16) 
form PT = A exp (BT-*j), 

where A and B are positive constants which depend on the physical character 
of the gas in question. The ratio of the relaxation times in regions 2 and 5 is 
therefore (in laboratory time) 

where we have assumed that the laboratory value for the relaxation time in 
region 5 is essentially the same as the particle time, and the laboratory relaxation 
time in region 2 is approximately equal to the particle time divided by the 
incident-shock density ratio, 7. 

This last relation can be simplified considerably if we make use of the reasonable 
approximations that T5 E 2T2 and P5 N yP,. The result of these substitutions is 

72L/75L 21 exp (0 .2BT~4).  (18) 

The outer solution should therefore be most accurate for gases which have large 
values of B. Gases such as N,, CO and 0,, for example, have larger values of B 
than CO,. (For informatioii regarding the values of B in several common gases, 
see Millikan & White 1963a.) The ratio of the relaxation times also becomes more 
favourable at  lower temperatures (i.e slower shock speeds) in a given gas. 

In  order to provide specific numbers for the CO, case shown in figure 4, we 
must make use of the particular rate expression (see (14) and (15)) employed in 
those calculations, since it is not of the form specified above in (1  6). The result 
of the computation, based on the frozen conditions in regions 2 and 5 ,  is 

TZLI75L N 4. (19) 
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This ratio is not nearly as large as one might have expected on the basis of the 
good agreement shown in figure 4. The reason for this apparent discrepancy is 
due, in large part, to not having included in the analysis the relative influence 
of the relaxation in regions 2 and 5. That is, while the effect of relaxation in 
region 5 is to cause a decrease in wall pressure (for a gas which remains frozen in 
region 2)) the subsequent (or simultaneous) effect of relaxation in region 2 is to 
cause an increase in pressure some 3 to 6 times as large. A representative calcula- 
tion of the 'effective ' relaxation-time ratio shouldinclude this factor. The effective 
ratio provides a more meaningful criterion for the potential accuracy of the 
outer solution. 

For the case of shock-wave reflexion in CO, under consideration here, the 
'pressure-influence' factor is about 6 so that the effective ratio of the relaxation 
times is about 24. The magnitude of this number is consistent with the accuracy 
exhibited by the outer solution in figure 4. 

To illustrate the improvement in the outer solution which might be expected 
with a more favourable gas, consider the relaxation-time ratio for a Mach 8 shock 
wave in N,. A value of B equal to 235 is given by Millikan & White (1963b) 
and a reasonable value for T, is 3750 OK. Substitution of these numbers into (1  8) 
yields a relaxation-time ratio of 20. The appropriate pressure-influence factor 
is about 4, so the effective relaxation-time ratio is about 80. The outer solution 
should provide extremely accurate results for such a gas, but unfortunately no 
exact solutions for wall-pressure histories in N, are available for quantitative 
comparison. 

A similar calculation for the relaxation times in a chemically relaxing gas 
can also be made. Using the rate law in ( l l ) ,  for example, a characteristic re- 
laxation time based on the frozen conditions in region 5 is 

The appropriate laboratory relaxation time in region 2 is, accordingly, 

72L 2: ( W / ~ k a ) 2 F .  (21) 

(22) 

where 8, is the characteristic temperature for dissociation, and introduce the 

If we assume that the dissociation rate can be expressed in the form 

k d  = AT-B exp ( - OJT), 

further approximations that B N 2, T5F 2: 2T,, and p5F 2: 

simple result that 
we obtain the 

(23) 7ZL/75L ('/TI?) exp ('dT5F). 

This analysis is implicitly restricted to shock waves which are strong enough 
to cause significant dissociation in region 2, but too weak to cause significant 
ionization in region 5. For 0, the corresponding shock-strength range is about 
Mach 7 to 14, so the frozen temperature is bounded approximately by 

3.5 6 ed/T5F 6 12. (24) 

(These temperatures were computed on the assumption that all the internal 
energy modes were equilibrated at  the local translational temperature.) The 
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results of (24) are typical of other diatomic gases as well, and it is obvious that, 
except for very strong shock waves, the relaxation-time ratio expressed in (23) 
can be enormous. Bearing in mind further that these figures do not include the 
pressure-influence factor discussed above, the excellent agreement found in 
figures 2 and 3 is clearly justified. 

The simplicity and accuracy of the outer solution, for cases involving either 
chemical or vibrational relaxation, suggest the feasibility of using end-wall 
pressure measurements to obtain relaxation-rate information. Indeed, the 
ability to perform such experiments and the lack of a satisfactory theory 
for reducing the data (with a reasonable expenditure of computer time) were 
primary motivations for the present theoretical effort. For an application of this 
technique to a determination of the vibrational relaxation rate in CO, see Hanson 
(1970). 

3. Inner solution for the wall pressure 
The results of the previous section have verified the utility of the outer solution 

as a simple and accurate means of calculating end-wall pressure histories in a 
relaxing gas, if the relaxation-time ratio is reasonably large. The outer solution 
predicts the incorrect short-time behaviour, however, and with the objective 
of improving this situation we propose to pursue a simple inner solution based 
on an initial-slope calculation. 

The theory for the initial rate-of-change of wall pressure in a vibrationally 
relaxing gas has already been presented by Johannesen et al. (1967), and their 
results can be employed directly here. For the case of a chemically relaxing gas, 
however, we prefer to use a slightly different approach which relies rather more 
on physical intuition. Since this new approach provides an alternative to Johan- 
nesen’s technique (which could also be extended to cases involving chemical re- 
laxation), it  is worthwhile to use this opportunity to illustrate the method and 
to demonstrate the accuracy which can be expected. The theory for the initial 
slope in a chemically relaxing gas follows directly below. 

Although the inner solution is to be applied only during times of the order of 
that required for the gas to relax in region 5, a period during which one might 
expect this relaxation to dominate the wall-pressure history, the effects of re- 
laxation in region 2 can also exert a strong influence and hence must be included 
in the analysis. For simplicity, however, we assume that the chemical relaxation 
in regions 2 and 5 produces independent changes in the wall pressure. The initial 
slope of the wall pressure will thus be composed of two separate contributions. 

We begin by writing the pressure as a function of the density in regions 2 
and 5 ,  i.e. 

where 7 = p2/p1 and 5 = p5/~1, and y is the specific-heat ratio for the translational 
and rotational degrees of freedom only. The Mach number, M,, is defined by 

M ,  = K / ( Y W ) * .  (26) 



732 R. K .  Hanson 

Equation (25)  is strictly correct only for a constant-speed reflected shock wave 
with uniform conditions upstream and stagnated flow downstream. For the 
purpose of an initial-slope calculation, however, we can assume that the speed 
of the reflected shock wave adjusts to upstream changes in 7 and end-wall 
changes in 6 such that (25) remains valid. 

Consider first the effects of relaxation in region 5 (i.e. changes in 6). The initial 
slope of the wall pressure is related to the initial slope of the density ratio by 

Since it is our expressed intent to calculate only the initial rate-of-change of 
pressure, all properties will necessarily be evaluated using the frozen shock con- 
ditions, and the subscripts for x and t equal to zero may be dropped. Because the 
gas particles undergo adiabatic changes (heat transfer to the wall has been 
neglected throughout this work), the change in wall pressure may also be written 
as 

(28) ap5/at = p5(ah5/at). 

It is necessary now to be more specific about the caloric and thermal equations 
of state, and we therefore restrict our attention to a homonuclear diatomic gas 
such as 0,. If electronic excitation is neglected, the enthalpy per unit mass is 

( 2 9 )  
simply 

where R is the gas constant, D is the dissociation energy and u is the vibrational 
energy, all per unit mass of the molecular species. Assuming that the vibrational 
energy mode is equilibrated with the translational temperature, we know that 

h = (1  - 01) [.iRT + g] + a(5RT + D ) ,  

u = Z ( T )  = RO,/[exp (O,/T) - 11, (30) 

where 0, is the characteristic vibrational temperature. The thermal equation of 
state for the dissociating gas is simply 

P = pRT(l+a). (31) 

A manipulation of the differential forms of (29 ) ,  (30) and (31), together with 
( 2 8 ) ,  permits one to write the initial slope of < as 

a</at 2: 6[(7/9P5) ( G 5 / W  -I- gY(T5) (aa/at),I, (32) 

where Y ( T )  = (0,/T- 3-ZIRT). 

Equation (32) includes the approximation that a3/aT N R, which is quite 
acceptable for the temperatures of interest in this application (T5 2 20,). If 
one now combines (27)  and (32),  and makes use of (25)  (in its approximate form) 
to simplify the result, the initial slope of the wall pressure owing to chemical 
relaxation in region 5 may be written as 
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We turn now to a consideration of the role played by the relaxation in region 2 
(i.e. changes in 7). The sensitivity of the wall pressure to 7 is stated by (25 ) ,  while 
the rate at which changes in wall pressure occur can be linked to the spatial 
gradient in 7 through (9). The result for the initial slope of the wall pressure is, 
accordingly, 

In  this instance vrefers to the frozen value of the reflected shock speed, (v)R2--F5r 
and it is appropriate to use the frozen sound speed evaluated at  the conditions 
present immediately after shock reflexion, (af)F2--F5. 

Variations in 7 can be related to changes in a through the incident-shock 
conservation relations and the caloric and thermal equations of state. The result is 

Dq/Dt N &[1 -j&- 1)-l]-1Y(Tz) (DalDt),, 

(Da/Dt)z = 7 4  k,(T,)/ WRTl. 

(35) 

where 

(Details of this derivation are provided in the appendix.) Substitution of (35) 
into (34) permits one to write the initial slope in wall pressure owing to chemical 
relaxation in region 2 as 

The combined solution for the initial slope of the wall pressure is given by the 
sum of (33) and (36). Note that the effect of relaxation in region 2 always provides 
a positive contribution to the initial slope since all the terms on the right-hand 
side of (36) are positive (for the full range of conditions of interest here). On 
the contrary, the effect of relaxation in region 5 may bring about either a nega- 
tive or a positive contribution to the initial slope depending on the sign of 
Y(T5). The parameter Y changes sign at a shock strength of about Mach 12 in 
0, (T5 2: %O, N 15,000 OK), which is well below the shock strength needed to 
completely dissociate the gas in region 5. 

A plot of the initial slope versus shock speed in chemically relaxing 0, is 
shown in figure 5. Since the rate-of-change of a in region 2 and region 5 is pro- 
portional to the initial pressure, it is convenient to plot a single curve, valid for 
all pressures, for (aP,/at)/P:. With the aim of providing a realistic estimate for 
the initial slope, the calculations were carried out using the dissociation-rate 
values suggested by Wray (1962), namely 

k,(T) = 2.25 x 1012Tt(Od/T)1.5exp ( -  O,/T) [cm3/(mole see)]. (37) 

For weak shock waves, and hence rather low temperatures, the relaxation in 
region 5 is dominant, thereby producing a negative initial slope of small 
magnitude. As the shock strength increases, the reaction rate in region 5 grows 
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rapidly, hence causing a larger rate-of-decay in the pressure. For yet stronger 
shock waves, relaxation in region 2 beomes important, and finally, owing to this 
influence, the initial slope turns positive. For shock strengths above Mach 12, 
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FIGURE 5. Initial rate-of-change of wall pressure in chemically relaxing 0,: TI = 300 "K, 
y = 1.4 and kd = 2-25 x 101~ d ( e , p y e x p  ( - e d / q  [cm3/(m01e sec)]. 
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FIGURE 6. Comparison of short-time wall-pressure histories in chemically relaxing 0,: 
V,  = 3.05 km/sec, TI = 294 OK, PI = 2 tom and k, = 7.3 x loz1 T-2 [cm6/(mole2 S C C ) ] .  

the effect of relaxation in region 5 also yields a positive contribution to the initial 
slope. The magnitude of the initial slope continues to rise with increasing shock 
strength owing to the growing values for the dissociation rates. Similar results 
would be exhibited by other gases. 
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The accuracy of the initial-slope calculation for a chemically relaxing gas is 
demonstrated in figure 6 for the same case of shock-wave reflexion shown earlier 
in figure 2. Comparison is again made with the numerical solution based on the 
method of characteristics, and the agreement is good. The inner solution based 
on this initial-slope calculation consists of a simple linear decay from the initial 
value of wall pressure, PF2-F5/Pt. A composite solution is obtained by simply 
patching the inner and outer solutions together at their intersection. 

While further improvement in this inner solution is obviously possible (e.g. 
by employing an exponential decay rate), such refinements are not necessary 
for our present purposes. Our major objective is to establish a pressure history 

0 0.06 0.12 

Time (psec) 

0.18 

FIGURE 7.  Comparison of short-time wall-pressure histories in chemically relaxing 0,: 
V,  = 3.96 km/sec, TI = 294 OK, PI = 2 torr and k, = 7.3 x loa1 T-2 [cms/(mole* sec)]. 

which can be successfully employed in the calculation of other end-wall thermo- 
dynamic properties. Details of the initial pressure history are therefore not 
critical since the variations in the thermodynamic properties during this time 
period are controlled primarily by the rate a t  which the dissociation reaction 
proceeds. It is important, however, that all the thermodynamic properties, 
including the pressure, begin with their correct initial (frozen) values, and this 
objective is achieved with the present crude model. Details of the pressure history 
are important for large values of time, of course, since the gas then remains 
essentially in local chemical equilibrium and changes its thermodynamic state 
only because of the work done on the gas as it is compressed. 

The initial-slope result for a stronger shock wave in 0, is shown in figure 7 
(see figure 3 for the corresponding outer solution). Again the agreement with the 
initial slope of the Ames solution is good. The unusual structure of the Ames 
results, which begin with a steep initial slope followed by a decrease in slope and 
then another increase, can be understood from (33). In this case Y(T5) is initially 
negative so that the effect of relaxation in region 5 is to help raise the pressure 
from the frozen value rather than to decrease it. The first decrease in the slope 
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of the Ames solution occurs because of the rapid decrease in temperature which 
reverts the sign of Y(T5)  back to its usual positive condition. As the temperature 
in region 5 decreases further, the relaxation in region 2 becomes dominant, thus 
causing a new increase in the slope. For shock conditions such as these, an inner 
solution based on the initial slope would never intersect the outer solution, and 
a composite solution must be formed by a different technique. For our purposes 
it is sufficient to assume that the pressure remains constant until the outer solu- 
tion reaches the frozen-pressure level. 

3 3 
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FIGURE 8. Comparison of short-time wall-pressure histories in vibrntionally relaxing GO,: 
V,  = 1.62 km/sec, T, = 300 O K  and P, = 1 torr. - -, small steps; 0, large steps. 

Information necessary to compute the initial slope of the wall pressure in 
vibrationally relaxing CO, appears in (A 11) and figure A 2 of Johannesen et al. 
(1967). The important observation to be drawn from those results is that the 
initial slope is always negative, except for shock waves of strength less than 
Mach 2 .  Short-time results for the CO, case previously discussed here are shown in 
figure 8 (see figure 4 for the outer solution). The agreement between the initial 
slope and the characteristics calculation is good a t  very short times but rapidly 
degenerates. In such cases it is more practical to select a constant-pressure inner 
solution, as shown in figure 8, although the particular inner solution chosen has 
only a small effect on the computed histories of the other thermodynamic 
properties. The decision whether to employ the initial-slope or constant-pressure 
inner solution can be made from a simple comparison of the magnitudes of the 
initial slope and the initial rate-of-increase in pressure presented by the outer 
solution. For chemical relaxation the separation in the relaxation times is 
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generally so large, except for very strong shock waves, that an inner solution 
based on the initial slope is useful. For vibrational relaxation, however, the 
relaxation times are likely to be much less separate, and a constant-pressure 
assumption may often be preferable. 

4. Solution for the time-varying thermodynamic state 
The previous sections have described an approximate technique for predicting 

the end-wall pressure history. It is shown here that once a pressure solution has 
been formulated the time evolution of other end-wall thermodynamic properties 
can readily be found. The validity of this approach is again confirmed by com- 
parison with results based on the method of characteristics. 

Variations in the thermodynamic state are calculated by applying the energy 
equation for one-dimensional adiabatic flow, 

DPIDt - p  DhlDt = 0, 

to the element of gas located adjacent to the end-wall. For this particular gas 
element the velocity is identically zero and the energy equation reduces to (28). 
The thermodynamic history of the gas follows directly from simultaneous 
numerical integration of (28) and the appropriate rate equation. 

Consider again the case of chemically relaxing 0,. The initial thermodynamic 
state is known from standard reflected-shock calculations assuming frozen 
chemistry and instantaneous equilibration of the internal energy modes with the 
translational temperature. Using the known solution for pressure, one can com- 
pute the value of h and a at time t = 6t by integrating (28) and (1 1) respectively; 
e.g. 

(39) 

Knowledge of h, P and a at t = 6t is sufficient to fix the value of T from the 
caloric equation of state, (29), and the value of p from the thermal equation of 
state, (31). These new values for the thermodynamic variables can be used to 
establish a new numerical value for the rate-of-change of a. The calculations 
continue until the final pressure is reached; at that time a steady equilibrium 
state will have been attained. 

Figures 9 and 10 provide comparisons of end-wall histories in 0, calculated 
with the present model and with the Ames program. The agreement is quite 
remarkable, especially when one considers the difference in computing time (a 
few hours per case for the Ames program as against less than a minute for the 
present model). It is also important to note that the Ames results stop short of 
steady-state conditions so that values are not obtained for the final end-wall state; 
the present model obtains this information quite readily. Since both calculational 
techniques utilize integration procedures, some numerical error is introduced 
by a h i t e  step-size. This error was investigated in the present study, and a 
step-size was selected such that the error can be neglected on the scale used for 
plotting figures 9 and 10. 

As noted previously, the present gas model does not account for electronic 
excitation. Since oxygen has some relatively low-lying atomic and molecular 
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electronic-energy levels, these would have to be considered in a more realistic 
model. However, the effect of their inclusion on the present results would only 
be to change slightly the initial and final values of all properties; the shape and 
time scale of the profiles would not be significantly affected. 

One immediate observation which can be made from these results is that the 
assumption of two separate time scales is valid for the end-wall properties. For 
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FIGURE 9. Comparison of solutions for end-wall thermodynamic properties in chemically 
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example, in figure 9 the variables T and a reach near-equilibrium values in about 
seconds, while the variable p requires about low4 seconds. The reason for 

this behaviour is fairly obvious in view of the previous discussion in $2. The 
temperature and the atomic-species mass fraction undergo rapid changes at 
first in order to establish a new state of chemical equilibrium, while the density 
continues to change, even after local equilibrium has been reached, owing to 
the continuing rise in the pressure level. The first effect, namely the change in 
T and a, occurs in a time of the order of the relaxation time in region 5, while the 
latter effect, the continued increase in density and pressure, is associated with 
the relaxation time in region 2. The values of T and a do not change significantly 
after a state of near equilibrium is attained because of the enormous energy 
required to further dissociate the gas, and the effect of relaxation in region 2 
produces comparatively small changes in the energy level of the gas in region 5. 

The time scales exhibited by these results depend directly on the magnitude 
of the reaction rate chosen. I f  the temperature dependence of the dissociation 
rate remains fixed, for example, while the magnitude of the rate is doubled, each 
point along the end-wall history would be reached in half the time. For the 
purpose of justifying this comment, at least for large values of time, consider the 
incident-shock region alone. Since all the properties at any one position in 
the relaxation zone, except distance from the shock wave, are coupled through 
the rate-independent conservation equations, doubling the reaction rate at all 
temperatures simply shortens the relaxation profiles by exactly a factor of two 
(Hanson & Watson 1966). Since the end-wall time scale is directly coupled to 
the scale of the incident-shock relaxation zone, all end-wall variations would also 
be shifted in time by a factor of two. 

The effect of the rate magnitude for small values of time is more obvious. 
Doubling the reaction rate clearly doubles the rate-of-change of the wall pressure 
(as shown, for example, by the inner solution) and the atomic-species mass frac- 
tion. Since the rate-of-change of enthalpy is linearly coupled to the rate-of-change 
of pressure, only half as much time would be needed to reach the same values of 
P,  h, a and T as before. 

A second important observation which can be made from figures 9 and 10 is 
that the h a 1  values of T ,  a and p at the wall are quite different from the reference 
equilibrium values, and the deviations are noticeably larger for the stronger shock 
wave. The steady-state temperature and atomic-species mass fraction are both 
greater than their reference equilibrium values, while the density always remains 
below its reference equilibrium value. The explanation for these effects is simple 
enough. The element of gas immediately adjacent to the wall undergoes an en- 
tirely different history from those gas elements which are situated far from the 
wall (i.e. external to the entropy layer) and are processed to the reference equi- 
librium state. The important differences in the particle histories appear in the 
energy of the particles immediately after passage through the reflected shock 
wave, and in the amount of work which is done on the gas thereafter. For example, 
it is easy to show that additional energy is added to the gas near the wall because 
this gas is compressed from an initial state of lower density. The additional 
internal energy results in larger values for the temperature and atomic-species 
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mass fraction, and to be consistent with the thermal equation of state the final 
density is correspondingly decreased. 

The magnitudes of these deviations are plotted as a function of shock strength 
in figure 11.  Results are presented for the temperature, density and internal 
energy of chemicallyrelaxing 0,. A superscript prime has been used to denote the 
steady-state value of a property evaluated at  the wall. These results are only 
weakly dependent on the reaction rate employed in the calculations since the 
entropy-layer effect derives primarily from variations in the energy of the gas 
particles and not from the rate at  which the particles adjust to their changing 
environment. The magnitudes of the entropy-layer deviations are clearly large 
enough to be significant for some shock-tube experiments. 
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FIGURE 11. Final end-wall states in chemically relaxing 0,: 
TI = 297 O K .  P,: - -, 1 tom; ---, Storr. 

The results presented in figure 11 represent the maximum degree of thermo- 
dynamic non-uniformity within the entropy layer since the deviations are largest 
at the wall. Another important parameter is the spatial extent of the layer. If 
one defines a relaxation length behind the incident shock wave, L,, then the 
entropy-layer thickness in region 5 is (by simple geometry) given approximately 

The proper value for the reflected-shock speed in this case is the final equilibrium 
value. Typical values for the entropy-layer thickness in 0, are shown in figure 12 
for two different initial pressures. Also plotted is the entropy-layer formation 
time, taken here to be simply the laboratory value for the relaxation time in 
region 2, i.e. 

For these cases of chemical relaxation, the relaxation length in the incident- 
shock flow has been defined to be the distance a t  which the atomic-species mass 

721; = L,/& 141) 
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fraction reaches 90 % of its equilibrium value. The results presented of course 
depend strongly on the dissociation rates employed, namely 

kd,oz = 2.25 x 1012T?i(8d/T)1'5 exp ( - 8,/T) (42) 

and k d ,  0 = 2*8k,, 02 (43) 

(Wray 1962). Different rates are used for atomic and molecular collision partners 
in order to account for the recognized increase in the efficiency of the atomic 
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FIGURE 12. Entropy-layer thickness (L5) and entropy-layer formation time ( T ~ I , )  in chemi- 
callyrelaxing0,: T1 = 297 OK, k,,,, = 2.25 X 1012T~(0d/T)1'5 exp ( - od/T) end kd,o = 2.8kd,0p 
[cm3/(mole sec)]. PI: - -, 1 tom; ---, 5 tom. 

species in promoting dissociation. According to figure 12, the entropy-layer 
thickness becomes greater than 1 mm for shock strengths less than about Mach 12 
if the initial pressure is 1 torr, and shock strengths less than about Mach 10 if 
the initial pressure is 5 torr. 

It is worth remembering a t  this point that the effect of heat transfer to the 
end-wall has not been considered in the present discussion, and this phenomenon 
would act in a real situation to modify the entropy layer induced by relaxation 
processes. 

We turn our attention now to vibrational relaxation. For a vibrationally re- 
laxing gas the calculation of the time-varying thermodynamic properties is some- 
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what simpler. The energy equation, (28), remains the same, but the appropriate 
caloric equation of state for a diatomic (or linear triatomic) molecule is simply 

h = ZRT+a. (44) 

Again the pressure solution and the initial end-wall state are presumed known 
from the outer and inner solutions. The solution for the thermodynamic state 
proceeds by simultaneously integrating (28) and the rate equation, (13), so that 
at each step in time we can find, in turn, new values of h, CT, T and T .  The thermal 
equation of state, P = pRT, (45) 
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FIGURE 13. Solution for end-wall thermodynamic properties in vibratiorially relaxing CO,: 
V,  = 1-62 km/sec, TI = 300 "K and P, = 1 torr. Johannesen et al. (1967) relaxation rate. 

is needed only to calculate the density, if that quantity is desired. For vibrational 
relaxation the calculations are actually simple enough that they may be carried 
out with reasonable speed and precision by hand. 

Figure 13 provides the computed results for the case of shock-wave reflexion 
in CO, for which the outer and inner solution were presented earlier (see figures 4 
and 8). Unfortunately a characteristics solution is not available for quantitative 
comparison, but the character of the results is in agreement with the solution 
presented by Johannesen et al. (1967) for their 'universal ' diatomic gas. Thermo- 
dynamic histories were computed using both of the inner solutions presented in 
figure 8, but the differences were for the most part too small to be distinguished 
on this figure. (The results shown were computed with the constant-pressure 
inner solution.) 

The presence of two separate time scales in the wall properties is less marked 
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for vibrational relaxation, thus permitting the results to be plotted with a linear 
time scale, The time required for the temperature to approach within a few per 
cent of its steady-state value is less than lpsec, while the pressure and density 
both require about 4psec to attain this same deviation from their final values. 
The ratio of these times is about what one would expect from the consideration 
of relaxation-time ratios presented in $ 2  of this paper. The separation of the 
two time scales for the pressure history is much greater, however, because of 
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FIGURE 14.Finalend-wallpropertiesinvibrationallyrelaxingC0,: TI = 300 "Kandy, = 1.4. 

--, T;IT; = p$/p;; - - -, eLje$. 

the relative influence of the relaxation in regions 2 and 5, also discussed earlier. 
It is this increased separation in the time scales of the pressure history which 
makes the outer solution so successful, and it is this success which permits one 
to calculate simply and accurately the wall histories of the remaining thermo- 
dynamic variables. 

The steady-state deviations from the reference equilibrium state are qualita- 
tively the same for a vibrationally relaxing gas as exhibited earlier by a chemically 
relaxing gas; i.e. the final temperature and internal energy at the wall are larger 
and the density is smaller than the reference equilibrium values. These are the 
results to be expected for all forms of relaxation. The magnitudes of these devia- 
tions in CO, are plotted for a range of shock speeds in figure 14. Again the results 
depend very little on the actual relaxation rates employed. 

The spatial extent and the formation time of relaxation entropy layers in CO, 
are shown in figure 15. The defhition of L, is the same as (40) while L, and 72L 
are based simply on the frozen conditions in region 2, i.e. 

PlL2 = P 1 7 2 L )  v, (46) 

and 472L = P l ( m z F / ( 7 m z F .  (47) 
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The relaxation rate employed is the one specified iiz (14). The thickness of the 
entropy layer is seen to  be greater than 1 mm for shock waves of strength less 
than Mach 4.6 and an initial pressure of 1 torr. 

The thicknesses predicted by figure 15 are in reasonable agreement with 
Johannesen's experimental observations (see, for example, figure 8 of Johannesen 
et al. 1967), but the magnitude of the density decrement predicted by figure 14 
is greater than the value actually measured owing to our neglect of heat-transfer 
effects. 
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FIGURE 15. Entropy-layer thickness (L6)  and entropy-layer formation time ( T ~ ~ )  in vibra- 
tionally relaxing CO,: TI = 300 OK and y1 = 1.4. Johannesen et al. (1967) relaxation rate, 

5 .  Conclusions 
The problem of shock-wave reflexion in a relaxing gas has been investigated. 

It was shown that the wall pressure is characterized by two different time scales. 
The separation in these time scales allows formulation of simple inner and outer 
solutions for the pressure history which are in good agreement with numerical 
calculations based on the method of characteristics. Since the overall pressure 
behaviour is strongly dominated by the relaxation behind the incident shock 
wave, the outer solution provides a good fit to  the exact pressure history for all 
but very short times after reflexion. The simplicity of the outer solution, essen- 
tially a direct mapping of the spatial distribution of density behind the incident 
shock wave into a temporal distribution of pressure on the wall, should make the 
model particularly useful for rate-measurement studies. 

Knowledge of the pressure solution enables computation of the time evolution 
of other thermodynamic variables in the gas adjacent to the wall. Results based 
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on this model are in excellent agreement with those computed using the method 
of characteristics, although the simple model requires only a small fraction of the 
computing time. 

An interesting result of the non-steady reflexion process is the formation of a 
non-uniform entropy layer adjacent to the end-wall. Numerical results have been 
presented to describe the non-uniformity and spatial extent of this layer in 
chemically relaxing 0, and vibrationally relaxing CO,. These results are pertinent 
to investigations which depend on shock-wave reflexion as a means of obtaining 
a well-dehed sample of uniform high-temperature gas. 

For additional results and discussion of this problem, see Hanson (1968). 
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Appendix. Reaction-rate relation behind the incident shock wave 

and region 2 downstream), one can write, for the downstream pressure, 
Using a co-ordinate system fixed to the incident shock wave (region 1 upstream 

P2 = Pl+pJ:( l - l /q)  2 :p1Tq(1 -1 /q ) .  

Changes in pressure owing to changes in density are therefore specified by 

dP2 = P1 V,2dqlq2, 

dP2IP2 5 (dr/r)l(r - 1)- 
or, in dimensionless form, 

The subscript 2 will hereafter be taken as understood. 

between adjacent flow-field points are also given by 
Since the flow is assumed to be adiabatic, differential changes in pressure 

dP = pdh. (A 4) 

(A 5 )  

Dividing (A 4) by the thermal equation of state, (31)) we obtain 

dP/P = dh/[RT( 1 +a)].  

If we restrict our attention to the conditions immediately behind the shock front, 
then a = 0 and the differential form of the caloric equation of state (see (29)) is 
simply 

dh = [+RT+D-T]da+gRdT+dT. (A 6) 

For the temperatures of interest here (i.e. T2 > 0,) 

d 5  = (aT/aT) dT 2i R dT 
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so that (A 5) can be rewritten as 

dP/P z [++ O,/T - 3/RT] da + dT/T. 

Solving for dT/T we obtain 

dT/T 2: $[dP/P - ($ + 8,lT - a/RT) da]. 

dP/P = dp/p + dT/T + dal( 1 + a)  = dq/q + dT/T + da, 

(A 9) 

(A 10) 

and substituting (A 9) and (A 3) to eliminate dT/T and dP/P respectively, one 
can finally write dy in terms of da, 

Using the differential form of the thermal equation of state, 

dy 2 $7[1 - g ( ~ -  l)-l]-lY(T)da, 

Y ( T )  = (S,/T - 3 -3/RT). where 

A more useful form of (A 11) is simply 
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